http://bharatpublication.com/current-issue.php?jID=30/IJABAS

Comparative Study of Arch Roof Truss and Flat Roof Truss for Aircraft Hangar of Boeing 737

*Nawaz Sharif, **Dr. Umesh Pendarker

*P G Student, **Professor Department of Civil Engineering, Ujjain Engineering college- Ujjain M.P.

ABSTRACT

This research attempts to perform a comparative study to identify better choice between the arch or flat roof truss for aircraft hangar. As growing trend of air buses, this research focuses to design and analyze the aircraft hangar for Boeing 737. The aircraft hangar with dimension 36 X 32 X 12 meters is considered for particular study Three model for both Arch and flat roof truss with varying depth of 2-meter, 4 meter and 6 meters are modelled in STAAD pro and analysis is performed. The final results conclude that arch roof truss is most suitable for over flat roof truss as arch roof truss gives very less value for deflection and fewer more steel as compare to flat roof truss. Hence arch roof truss is best suitable for construction of aircraft hangar because it gives less deflection.

INTRODUCTION

Airlines all over the world have been inducting larger and larger sizes of aircraft on a regular basis in recent years to meet the ever-increasing demands of air traffic. The provision of matching ground services frequently necessitates significant investment, the majority of which is accounted for the cost of long-span hangers. As a result, much thought has recently been given to make them more functionally efficient and cost-effective by -

(a) Arriving at dimensions that optimize the use of the area and volume required for servicing a specific aircraft.

(b) Choosing efficient structural forms to roof them, such as space frames, and optimizing these to minimize weight.

This review paper investigates the planning configuration which optimizes the area and volume requirement and secondly about the structural papers.

Boeing					
Boeing	707	727	737	767	
Length	46.61	46.69	33.40	8.51	
Span	44.41	32.92	28.88	47.57	
Height	12.93	10.36	11.31	15.85	

Table 1 Boeing size chart for hangers

BHARAT PUBLICATION

Vol. No.6, Issue III, Jul-Sep, 2022

METHODOLOGY

- (1) Abstracting the dimension from table -1, for Airbus
- (2) Modelling the above-mentioned truss in STAAD pro.
- (3) Performing analysis and comparing.

Truss with 2-meter depth
Truss with 4-meter depth
Truss with 6-meter depth

Table 2 General modal details

Design parameter -

Site location	Indore (M.P.)
Aircraft hangar for	Boeing 737
Maximum Dimension for single bay	Length = 36, Width = 32 , Height = 12 (meters)
Seismic Zone	II
Design Code	IS – 800, IS – 875, SP – 23 , SP – 38, IS - 1893
Load	Dead Load, Live load, wind load, seismic load
Type of structure	Steel (Tubular)

Table 3 Design Parameter

Design loads considerations

The following are the loads that have been taken into considerations.

Material used -

Material	GC Sheet
Weight per square meter	6.28 Kg
Gauge	19G (1 mm)

Table 4 Roof material details

1) Self-weight / Dead load calculations:

Dead load has been considered with density 6.28 Kg/m3

D.L = 36 X 1 X 6.28 (Kg)

- = 226.08 Kg
- = 2260.8 N
- = 2.26 KN (acting at each load)

2) Live Load:

L.L. = 1 KN/m2 (As per IS 875 part - 2) for 1-meter square area, load comes out to be 1 KN.

Hence,

Live load on roof has been considered as 1 KN (acting at each node)

Vol. No.6, Issue III, Jul-Sep, 2022

3) Wind loads is calculated in STAAD pro with following parameters – Location – Indore

Basic wind speed - 47 m/s

K1 = 1.07K2 = 0.97K3 = 1K4 = 1

Design wind speed (Vz) = Vb X K1 X K2 X K3 X K4 = 47 X 1.07 X 0.97 X 1 X 1 = 48.8 m/s

Wind pressure (pz) = $0.6Vz^2 = 1.5 \text{ KN/m2}$

4) Auto Load combination in STAAD pro is considered as per IS 800

Combination		Lim	It State of Strengt	h	e . e	5	Limit S	tate of Serviceability	7
	DL	Table 2	LL"	WL/EL	AL.	DL.	;	<u>ц</u> "	WL/EL
		Leading	Accompanying)		1	Leading	Accompanying	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
DL+LL+CL	1.5	1.5	1.05		-	1.0	1.0	1.0	-
DL+LL+CL+	1.2	1.2	1.05	0.6	_	1.0	0.8	0.8	0.8
WL/EL	1.2	1.2	0.53	1.2					
DL+WL/EL	1.5 (0.9)"		_	1.5	-	1.0	_		1.0
DL+ER	1.2 (0.9) ^b	1.2	-		-	-	-		—
DL+LL+AL	1.0	0.35	0.35		1.0	-			

Figure 1	Load	combination	as	per	IS	800
----------	------	-------------	----	-----	----	-----

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

Figure 2 Nodal Plan for plan roof and arch roof truss

Figure 3 Flat roof truss general geometry

Vol. No.6, Issue III, Jul-Sep, 2022

Figure 4 Arch roof truss general geometry

4.0 ANALYSIS RESULT -

The comparative study of analysis results is tabulated below -

	PLAIN TRUSS	ARCH TRUSS
	Axial force in plain roof truss (KN)	Axial force in Arch roof truss (KN)
Model 1	1141.65	1520.12
Model 2	795.585	1274.102
Model 3	799.8	1357.87

Table 5 Comparative table of Maximum Axial force

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

Figure 5 Comparative graph of Maximum Axial force

	PLAIN TRUSS	ARCH TRUSS		
	Axial force in plain roof truss	Axial force in Arch roof truss		
Model 1	55.49	9.451		
Model 2	0.631	8.806		
Model 3	13.568	13.318		

Table 6 Comparative table of minimum axial force

Figure 6 Comparative graph of minimum axial force

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

	PLAIN TRUSS	ARCH TRUSS
	Shear force in Y direction plain roof truss	Shear force in Y direction in Arch roof truss
Model 1	176.213	231.092
Model 2	134.474	230.226
Model 3	167.164	288.336

Table 7 Comparative table of Shear force in Y direction

Figure 7 Comparative graph of shear force in Y direction

	PLAIN TRUSS	ARCH TRUSS
	Shear force in Z direction plain roof truss	Shear force in Z direction in Arch roof truss
Model 1	50.475	261.43
Model 2	25.728	95.232
Model 3	37.714	106.165

 Table 8 Comparative table of Shear force in Z direction

Vol. No.6, Issue III, Jul-Sep, 2022

Figure 8 Comparative table of Shear force in Z direction

	PLAIN TRUSS	ARCH TRUSS
	Bending in Y direction plain roof truss	Bending in Y direction in Arch roof truss
Model 1	52.19	117.782
Model 2	32.688	116.0998
Model 3	34.641	99.59

 Table 9 Comparative table of bending in Y direction

Figure 9 Comparative graph of bending in Y direction

BHARAT PUBLICATION

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

	PLAIN TRUSS	ARCH TRUSS
	Bending in Z direction plain roof truss	Bending in Z direction in Arch roof truss
Model 1	101.88	164.699
Model 2	83.375	151.427
Model 3	109.29	199.107

Table 10 Comparative table of bending in Z direction

Figure 10 Comparative graph of bending in Z direction

	PLAIN TRUSS	ARCH TRUSS		
	Torsion in plain roof truss	Torsion in Arch roof truss		
Model 1	7.298	19.512		
Model 2	4.502	41.577		
Model 3	6.954	63.96		

Table 11 Comparative table of torsion

Figure 11 Comparative table of torsion

BHARAT PUBLICATION

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

		Shear						
	Axial	force in Y	Shear force	Bending in	Bending in		Max	Steel take
	force	direction	in Z direction	Y direction	Z direction	Torsion	deflection	off(KN)
Flat roof	1141.6	176.213	50.47	52.19	101.8	7.29	93.37	2842.89
2 m	5							
Flat roof	795.58	124 47	25 729	22.69	92.27	15	05.2	2002.049
4 m	5	134.47	25.728	32.08	85.57	4.5	95.5	3092.048
Flat roof	700.8	167 15	27 714	24.64	100.20	6.05	05.08	4017 112
6 m	799.8	107.13	57.714	54.04	109.29	0.95	93.98	4017.112
Arch	1520.1	221.00	261.42	117 79	164 60	10.51	101 636	2724 72
roof 2 m	2	251.09	201.43	11/./8	104.09	19.31	101.030	5124.12
Arch	1274.1	220.22	05 222	116.00	151 /	41.57	86 774	5121.6
roof 4 m	02	250.22	93.232	110.09	131.4	41.37	00.774	5151.0
Arch	1357.8	200 226	106.164	99.5	199.1	63.96	82.039	6973.3
roof 6 m	7	200.330						

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>c</i> 1 · 1	. 11 C	11	
Table 12	Combined	table fo	or all	parameters

CONCLUSION

Analysis and design in this study yielded the following conclusions -

- (1) The arch roof truss gives less deflection and better performance as compare to flat roof truss.
- (2) The structural member of arch roof has higher value of forces as compare to flat roof, this may be due to the extra force due bending action or arch thrust.
- (3) The increase in depth of truss induces the buckling phenomenon in vertical member hence this may be a reason that increasing the depth of truss results in increases the size of member.
- (4) In this experiment arch roof truss is better than flat roof truss
- (5) From this we can conclude that arch roof is suitable for large roof truss as compare to flat roof truss.

REFERENCES

[1] A.Jayaraman1, R Geethamani2, N Sathyakumar3 and N Karthiga4 Shenbagam "design and economical of roof trusses & purlins (comparison of limit state and working stress method)", IJRET, Volume: 03 Issue: 10 Oct-201, eISSN: 2319-1163, pISSN: 2321-7308, pp 199-207.

[2] Ankush Limbage and Kshitija Kadam "Analysis of steel roof A- type truss for four different spans (Comparison of design presented in SP-38 and IS 875)", ISLTET, Vol. 6, Issue- 04 march 2016, ISSN-2278-61X, pp 439-443.

[3] Goraviyala Yogesh and Prof. K. C. Koradiya "Design and Comparison of Steel Roof Truss with Tubular Section (using SP: 38 And IS: 800-2007)", IJSRD, Vol. 4, Issue 02, 2016, ISSN (online): 2321-0613, pp 972-974.

Vol. No.6, Issue III, Jul-Sep, 2022

http://bharatpublication.com/current-issue.php?jID=30/IJABAS

[4] Ichiro Imai, Akira Suzuki, Yoshihito Tsukada and Yoshikatsu Tsuboi; Paper M3, "Design and Construction of Aircraft hangars in Japan - Part 3: Design and Construction of Huge Space Frame Roof Using Diagonal Grid Beam Truss for Jet Hangars", Proceedings of the IASS Symposium on "Innovative Applications of Shells and Spatial Forms", Bangalore, India, 1988, Vol II p.895.

[5] K. N. Kadam and A. J. Limbage "Comparison of Member Forces in A-Type Truss Using IS875 and SP38", International Journal of Engineering Research, ISSN:2319-6890(online), 2347-5013(print), Volume No.5, Issue:27-28 Feb. 2016, pp: 644-647.

[6] Kubadera Isao, Yoshikatsu Tusuboi and Ichiro Imai., Paper M4 "Design and Construction of Aircraft Hangars in Japan", Part 4: "Design and Construction of the Hangar for Overhauling in Thin Shell Construction", Proceedings of the IASS Symposium on "Innovative Applications of Shells and Spatial Forms", Bangalore.

[7] M.G.Kalyanshetti and G.S. Mirajkar "Comparison Between Conventional Steel Structures And Tubular Steel Structures", IJERA, Vol. 2, Issue 6, November- December 2012, ISSN: 2248-9622, pp 1460-1464.

[8] Miranda, E. and Bertero, V. V. (1994), Evaluation of strength reduction factors for earthquake-resistant design", Earthquake Spectra, EERI, vol. 2, pp. 357-379.

[9] Ramasawmy "Review of Recent Trends in the Planning, Analysis, Design and Construction of Space Frame Roofs for Aircraft Hangars"

[10] Rudolph, Peter; A "Three Dimensional" Concept for Multi-Form Hangars, Airport Forum, no. 4/1980.

[11] Sagar D. Wankhade1 and Prof. P. S. Pajgade2 "Design & Comparison of Various Types of Industrial Buildings", IRJES, Volume 3, Issue 6 (June 2014), ISSN (Online) 2319-183X, (Print) 2319-1821, pp 13-29.

[12] Soni Prabhat, Dubey S.K and Sangamnerkar Prakash "Comparison of Design of Steel Roof Truss using IS 875 and SP 38", International Science Congress Association, Vol. 2(5), May (2013), ISSN 2278 – 9472, pp 47-49.

[13] Yash Patel, Yashveersinh Chhasatia, Shreepalsinh Gohil, Prof. Tausif Kauswala and Het Parmar "Analysis and Design of Conventional Industrial Roof Truss and Compare it with Tubular Industrial Roof Truss", IJSTE, Volume 2, Issue 10 April 2016, ISSN (online): 2349-784X, pp 943-948.

[14] Kubik, L.A, Kubik, M.L. and Chilton, J.C., "Design and Construction of the CUBIC Space Frame Roof, Maintenance Hangar, Stanstead Airport" Vol 1, Projects and Project Studies, Proceedings of the IASS Symposium on "Spatial Structures at the Turn of the Millennium", Copenhagen, Denmark, 2-6, Sep, 91.